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1. Introduction

The past decade witnessed an extensive development in the field of satellite

radiotomography (RT) of the ionosphere, which significantly extends the

capabilities of research of the nearspace environment. Some experimental teams

in many countries have been working on the problem of reconstruction of

ionospheric sections by means of ray RT methods. Since 1990 a number of

experimental studies in this direction have been reported in the literature [1-17].

Some comparisons with the data from incoherent scattering radars and

ionosondes have generally shown an acceptable quality of tomographic

reconstructions [12-14]. All the shown experiments were realized by middle-orbit

navigation satellites ( 1000 km, like "Transit"-USA and "Cikada"-Russia). Surely

the development of these data by means of high-orbital navigation satellites is of

great interest (for example, like "GPS"-USA and "GLONASS"-Russia ( 20,000 kin)).

The consideration of a combination of middle and high-orbital satellites is usefull, too.

Such radiotomographic systems allow to search the structure of magnetosphere,

protonosphere, etc, and to study the influence of these mediums on navigation and

connection systems in details.

In connection with the experiments performed the questions arise concerning

the data quality, the accuracy of tomographic reconstruction. Given strong gradient

of electron density, one of substantial contraints imposed on ray radiotomography is

the ray refraction. Ignoration of refraction limits the resolving power of RT systems.

Taking the refraction into account, it allows to increase the possible resolving power,

but it transforms to more complex problems of nonlinear RT. Supposed that the set of

integrals over refractable rays, which curvature is determined by the propagating

medium are known. That is why the exploration of abilities of nonlinear RT is seems

important.

The aim of this work is to develop algorithms and programs for the ray nonlinear

(with refraction) Radiotomography of the Ionosphere and Radiotomography using

middle and high-orbital satellites.
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Part 1.

Algorithms and Programs for Radiotomography using middle and high-

orbital satellites.

1.1. Description variants of satellite Radiotomography using middle and high-

orbital satellites of opportunity.

As modern navigation systems on high-orbital satellites ( like "GPS" - USA and

"GLONASS" - Russia) are operated on a frequency of 1 GHz, in this case it is enough
to consider problems of linear tomography ignoring the ray refraction. The ray

refraction is a factor at a frequency of hundreds of MHz. Such problems of

radiotomography would be considered in the second part. Modern navigation systems

on high-orbital satellites mentioned in the first part ( "GPS" or "GLONASS" ) are

supposed to operate on frequences nearly 1.2 and 1.5 GHz.
Firstly let us remind the main relationships which connect the experimentally

measured physical values with the parameters of propagating medium. Known is [18-

20] the differential phase between the two L-band carriers, at f, = 1.575 GHz and

f2 = 1.227 GHz can be used to make precise relative total electron content (TEC)

measurements. The differential group delay between the 10.23 MHz modulation on

the two L-band carriers is used to fit these precise relative TEC measurements to

an absolute scale.

The difference of simultaneous dual-frequency GPS code measurements P1,

P2 (in meter) equals the TEC along the transmitter-receiver ray [18-20].

TEC j Nd- = S(P2 -P) + e (1)

Where j Ndo denotes the integration of the electron density N along the signal

path. Merging all bias terms (differential instrumental group delays in the receiver

and in the satellite, and multipath and observation noise) yields the error eP[m-21.

The scaling factor S converts units of distance [m] to units of TEC (electrons/m2)

and is derived from the GPS frequencies with:



S =0.025 2 - - 9.52*101 m'

The observation equation for the TEC from phase measurements (phase puth)

(I),D2 [m] looks similar [18-20]. The error e, [m-21 include the differential

instrumental biases of the phases and additional bias term exist due to the carrier

phase ambiguities MI, M 2.

TEC = JNdr = S(¢D2 - (D) + S(, - M 2A) + eD (2)

Where the ,, A2 denotes the wavelengths of sounding waves.

Thus phase and group delay measurements by means of modern navigation

systems GPS and GLONASS allow to find linear integrals of the electron

concentration. The following fact is of great importance for further consideration of

radiotomographic problems by means of GPS and GLONASS. TEC can be measured

to a relative accuracy of approximately 3*1014ell/ M2 , and absolute values can

be determined to approximately (1-2)*l16 el/ M 2 , plus any unknown GPS

satellite differential code offsets [21-24]. In other words given methods allow to

determine relative TEC precisely enough, but they showed unacceptable mistake in

determination of absolute TEC. This case is similar to the situation in Transit-Cikada

RT systems where major difficulty is that the linear integral of the electron

concentration is proportional to the absolute phase (D, whose accurate determination

is practically impossible, but the differences of linear integrals ( phase difference )

are measured with high precision. That is why the new approach was taken earlier to

determine the difference of linear integrals [1-3, 25], which (approach) brought

satisfyed results [1-3, 13, 14, 17]. Further the same approach would be taken to

determine the difference of linear integrals.

Let us consider possible variants of using of midlle and high-orbital satelittes

for radiotomographic purposes. Mostly geometry of experiments is essential for

qualitative radiotomographic reconstruction: the correlation of receivers and

transmitters, the way of crossing the reconstrtuctive area by rays, angle between rays.

The program "SATTOMO" was worked out to make geometrical analysis of

registration scheme. Given program allows to analyze radiotomographic registration

schemes, which use ground receivers and measuring systems on satelittes with cyclic
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orbits, such as Transit, Cikada, GPS, GLONASS, Microlab, etc. The description of this

program is cited in the end of this article.

Heights of orbits of satellites in program SATTOMO can be varyed, respectively

the period and the rotating angular velocity is changing. Zero height is corresponded

to receivers on the Earth, whose angular velocity is supposed to be zero. Given critical

altitude is the minimum height of passage of rays over the Earth . This height can be

chosen equal to zero. In other cases the choise of this height limits the range of ray

registration, and, for example, limits the rays passing through lower ionosphere. If the

number of satellites is given, it is possible to determine the direction of satellites

rotation in any of two orbits (+ counterclockwise, - clockwise) Angular location in the

initial moment of time is given in degrees in polar coordinate system where the zero

angle is corresponded to horisontal X-coordinate. Program also includes the setable

time of tomographic measurments T.. in seconds, time interval between drawing of

two neiboring rays (convenient time is 30-60 s, if the less time interval is chosen, the

picture of rays will be too densely) and time of drawing of the total picture on the

screen in seconds. The last is wished to be little (5-10 seconds) to have an

opportunity to examine the satellite motion.

The use of the only high-orbital navigation system like GPS-GLONASS with the

ground receivers for purposes of radiotomography of ionosphere and protonosphere

appears to be unperspective with the respect to little angular velocity of high-orbital

satellites. Indeed, for example, the GPS angular velocity is equal to

co = 0.0001456 rad / sec, what is seven times less than the middle-orbital satellite

angular velocity equal to 0.0009966 rad/ sec. Such satellites pass small distances in

tens of minutes (20-40) and fill a small angle. The use of a greater time intervals is

almost impossible because of the time change in ionosphere. In fig.la shown AO - is

the angle of filling the space by rays over the ground receiver during the GPS fly over

the head. This angle (AO =_ Aa(1 + R / H)) is close to polar angle of satellite Aa,

as the height of satellite is H = 20200 km what is essentially exceeds the Earth radius

R = 6370 km. Polar angle is changes proportionally to the time Aa = wot. For

example, in one hour ( equal to 1/12 of period of rotating) the polar angle will change

only for 21r / 12 = 300. The intersection of the rays (fig. lb) for receivers located at a

distance of Ar ( on the Earth) occurs on the height

ho0 Ar/2tan(AO/2)--Ar/2tan(0ot/2), what is ( for t&18OOs) ho - 12Atr / IZ. If

the distance between receivers is greater than 250 km, than the rays of neiboring

receivers are intersected on heights more than 1000 km. To make the rays intersect

in the lower boundary of ionosphere (150 km), receivers should be located densely
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The Geometry of the PIT Mfeasurements
H~e lat ue t ime 01:00:00
Ist orbit C4): 0 km,. T = 5066.1 sac,. w = 0.0000000 rod/sec
2nd orb it (1): 20'200' km, T 4 3149.0' sec,. w =0.00014S6 rod/sec
Cr it Ica Ia t Itude& 0 km

N -2

Eart
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(Ar <_ 60km). Fig.2 describes the geometry of radiotomographic experiment with

one and four receivers on the Earth ( angular location 30 ,400 ,500 ,600 ). Even after an

hour of measurings the essential "holes" were taken place, where the rays didn't get

into. The chosen distance between receivers was too great to examine the details in

such a scale. Picture didn't change high-quality , as the receivers have been coming

together, only the size and height of "holes" were reduced. Geometry of experiments

appears to be unsuitable for qualitative radiotomographic reconstruction with the use

of high-orbital satellites and receivers on the Earth. Next two pictures show bad

geometry and the existance of "holes" for four ground receivers ( T,,, =3600 s ) and

for two GPS satellites (fig.3). The same for two GLONASS satellites (fig.4). However

the use of network of ground receivers on the given square, each of that registrates

signals simultaniously from GPS and GLONASS satellites in various directions is waited

to be perspective. Such a system allows to determine parameters of ionosphere in

three-dimensional area over the given region.

The using of combination of different satellite systems appears to be more

perspective for radiotomography. Similar satellite systems were already worked out for

scientific investigations. Recently, on April, 3, 1995 Orbital Sciences Corporation

successfully launched the Microlab-1 scientific spacecraft (with altitude 600 km).

However the only middle-orbital satellite ( with altitude equal to 500-2000 km ) also

does not give the good geometry of experiment. Fig.5-6 show the schemes of

experiments with one middle-orbital satellite (Tm = 1800s) in combination with high-

orbital satellites: one Microlab with two GPS (angular location of GPS in the initial time

moment - 20, 110 degree) and Microlab ( 25 degree) (pic.5), and one Transit ( 30

degree) with three GLONASS (angular locaton in the initial time moment - 15 , 60

105 degree) (pic.6). These pictures show slight intersection of rays. With the help of

such a scheme it is possible to explore only part of protonosphere, where rays are

intersecting, under the condition that this area has strong enough local disturbance

and the contribution of inside areas of protonosphere is negligible.

The geometry of experiment is essentially better if the combination of a few

middle-orbital satellites on the orbit with high-orbital satellites is used. Fig.7 gives the

scheme of an experiment with three satellites Transit ( angular location of the initial

time moment - 0, 30, 60 degree) and one GPS (15 degree). It is seen that thirty

minutes measurements allow to reconstruct the structure of protonosphere on a wide

enough band. Fig.8 describes the scheme of radiotomographic registration with three

Transit (angular locations in the initial time moment 0, 30, 60 degree) and three

GLONASS satellites (angular locations in the initial time moment 15, 60, 105 degree).

Here thirty minutes measurements allow to reconstruct the structure of protonosphere
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The Geometry of the PT measurements

Pe!atiue time 00:30:00

ist orbit (H): 0 km, T = SOS6.1 seca, w = 0.0000000 rod/sec

2nd orbit C2): 20200 kmn, T = 43149.0 se', w 0.O00l456 rod/sec

LriLical altltude; 0 km

Earth

The Geometry of the PT 1Deasurements

Relotiue time 0•.0U:30:

Ist orbit CH)( 0 km'j T = 5066.1 sec. w = 0.0000000 rad/sec

2nd orbit I2): 1910 km., T = 404H9"5 sea, w = 0.000,SS, rad/sec

Cr it icai alt itude: 0 km

Eart
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Relothie time 00:30 :00
1st orb It% C 1 Y 600 km,. T = 'r198.3 sec,. w =0.00 10836 rod/sec
2nd orb it (2), 20200 km, IT "43149.0 sec, w -.0001H56 rod/sec
CrIt Ica 1 ait itude: 600 U~m

Re lot wue ti;me 0'10

Ist orbit (IYl 1000 km,. T = 630Hi.S sec,. w 0.0009966 rod/sec

2nd orbit (3): 19100 kmn, T = H0H9gn.S Sec, W = .000 ISSI rod/Sec
CrittIca 1 a it tude M00 km
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The Geometry of the PT measurements
Relatlue time 00;30:00

Ist orbit C3)1 1000 kin, T = 6304.S sec. w = 0.0009966 rod/sec
2nd orbit (1): 20200km, T= sec, w - u.uulHSS rod/sec

Critical altitude: 10,00n km

The Geometry of the PT Measurements
Pelotiue time 00':30:00
Ist orbit (3) 10003 km.. T = 6304.5 sec, w = 0.00099G6 rod/sec
2nd orbit 3,) 19100u km.. T = 4049915 sec, w = 0.0001S51 rod/sec
Critical altitude' 1000 km

1Earth
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in three intersective bands. Though this geometry is worse than a typical geometry of

experiments on satellites Cikada and Transit [1-17], as the range of angles of

intersection between rays is smaller, nevertheless, as it would be shown lower, it

allows to get radiotomographic cross-sections of protonosphere.

It is a remarkable fact that the use of several middle-orbital satellites, rotating in

the opposite direction, gives a good geometry with a set of fan beams. Fig.9 shows

the scheme of experiment with one GPS and three Microlab satellites (angular location

in the initial time moment 90, 120, 150 degree), rotating in the opposite to GPS

(80 degree) direction. After the registration period of twenty minutes (T,, = 1200s) the

ray structure, which consists of three beams is seen well. Fig.10 shows one of such a

beam with the height of "focus" multiplicity of 12000 km for one Microlab satellite. Let

us cite one more interesting example of using of combination of middle and high-

orbital satellites. Fig. 11 shows the scheme of fifteen minutes (Tm. = 900s) measurings

between one Transit satellite (angular location in the initial time moment 90 degree)

and one GPS (25 degree). Such satellite orientation allows to fill the area of nearearth

ionosphere by quasiparallel rays. Fig.12 describes analogious scheme (Tm = 960s)

with one Transit satellite ( angular location in the initial time moment 90 degree) and

two GLONASS (0, 45 degree). This geometry allows to fill the area around all the

Earth by quasiparallel rays.

First of all we want to remind the geometrical equations, which connect the

transmitters and recievers locations [3,6,8]. Here we will conditionally indicate the

locations of transmitters and recievers on the concrete orbits, meaning that the

observing result will not depend on changing this locations. We introduce a series of

parameters characterizing the geometry of the recording scheme in polar coordinates

(r, a). In Fig.13 (Rl,a,) - are the coordinates of one of the receivers located on

the first orbit r = R1 (also the reciever can locate on the Earth surface - R, = R -

Earth radius); (R 2 ,a 0 ) - are the coordinates of the satellite with transmitter on the

second orbit r = R2,R2 > R1 ; ,8 is the elevation of the R2 satellite; (p = 8 - ir / 2

is the angle to the satellite measured from vertical; 0 is the center of the earth; axis

0-0' is axis of the polar coordinate system. We consider here, that satellites rotate in

single or nearer planes, what is important for RT purposes. On the basis of simple

geometrical relations for any point in the ionosphere with coordinates (r, a) located

at the distance of I from the receiver the following equations are satisfied:
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The Geometrn y of the RT easurements

Pe lati ue time 00:20:00

1st orbit C(3* G00 km, T = Sf198.3 seCj w = 0.0010836 rod/sec

2nd orbit C"'I" 22000 kmj T T49609.0 sGc, w 0.0001320 rod/sec
Critical altitude: G00 km

"The Geometry of the PT measurements

Relot;ue time 00:20:00

Ist or-bit •W S6O0 km, To 5198.3 sec, w = .U0010836 rad/sec

2nd orbit Cl): 22000 kmJ, T = H960 .0 sec, W = 0.000 1320 rod/sec

Critical altitude: 600 km

Earth



PRelotie time 00:1SOO

1st orbit CDP: 1000 km, T =6304].S sac, w 0.0009966 rod/sec

2nd orbit 0I) 20200 km., T 43 149.0 sac, w 0.00014S6 rod/sec

Critical altitude: 0 km

The Geometry of the PIT Mfeasurements

Peiatiue time 00:2100l

ist orbit 0): 1000 kin, T =6304.5 sec., w =0.0009968 rod/sec

2nd orbit C%2): 19100 km., T 404991.5 sec, w =0.OOPOISSI rod/sec

Critical alt itude: 0 km

Eart
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l r R_

sin(a, -a) sin(7c / 2 +/3) sin(7r - (7r / 2 +/3)- (a, -a))'

From this, we obtain an equation for r(a) of the straight (/3 =const) ray

r(a) = R1 cos(/3) / (cos(/3 + a, - a)) (4)

and the relation which is inverse of it

a(r) = a + /3 - arccos(-R - cos/3) (5)
r

The relation between /3 and a, r follows from (4):

tan/3 = (cos(a, -a)--R1 / r) / (sin(a, -a)) (6)

Using (5), we obtain a formula for an element of the ray of length da:

l2da 2 r
do-2 = [1 + r 2(-d-ar)2 ]*dr2 = Ir= _Rco2/ * dr2 (7)

Then, the relation for the measured linear integrals (1,2) with respect to the

electron concentration will have the form

TEC=J N(r, a)rdr
r2 - R,2sin q7

In the place of the polar coordinates (r, a), hereafter it is convenient to use

the orthogonal system (h, z-): h = (r - R1) is the height above the first orbit or above

the earth's surface and •- = aR1 is the "transverse" (horizontal) distance along first

orbit. Here, ray equation (4) will no longer be a straight line

COS fl
h(r)= R [. 1] (8)

1 cos(fl +(r.-r)/R1 )
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Here, (,r,,h = 0) are the coordinates of the receivers. The relation which is the

inverse of (8) is similar to (5).

T -, = R,[8-fl -arccos( cos f)] (9)

In this case, subject to (7), the linear integrals of type (1-2) have the form

po F(h, r)(PA+ h)dh I(f8 (10)
R sin2 fl + 2ý+h2

Integration with respect to the ray connecting receiver i (vri = c-iRl) to the

satellite is replaced according to (7) by integration with respect to the height above

the first orbit to the height of the satellite h0 . The elevation 61 is determined (6) by

position of the satellite (h 0,i-0 ). The linear integral /(,r-) is dependent on the

coordinate of the receiver r, and the elevation of the satellite ,8. The linear integral

is the TEC here, the reconstructed function F will be proportional to N. Since there

cannot be a large number of receivers and the range of angles /8 is limited, it

is inadvisable to examine methods for analytical inversion of such linear integrals

and methods for integral transformations. In given case small-positions

(smallforeshortening) tomography is intended from the start to solve the problem in

discrete form and to use algebraic reconstruction algorithms or methods for

expansion into finite series.

Description of the the programm "sattomo" for vizualisation geometry of

satellite RT experiments.

This program allow to view on the screen the different versions of the

radiotomography measurements geometry for the one- and two-orbit satellite

configurations.

Input parameters and files.

Command line format is: SAT2.exe <configjile name> [p]. First parameter - the

name of file that defines all the input parameters for RT system geometry.



Second parameter (optional), if set, allow to print geomerty picture on the

EPSON-compatible printer.

The configuration file has the following format: several lines started at 1st

position in form: PAR1,PAR2,.... [; comments]:

Line 1: H-low H.high H.crit

Line 2: NSatl [+ or -] NSat2[+ or -]

Line 3: Posl(1) Posl(2) ..... Posl(NSatl)

Line 4: Pos2(1) Pos2(2) ..... Pos2(NSat2)

Line 5: PassTime Step DrawTime

The above mentioned parameters are:

- Hlow, Hhigh - orbit heights (kilometers) of 2 groups of satellites. Hlow=0

defines the receiver on the Earth's surface. - H crit - minimum height for the ray

traectory. If Hcrit=-0, the ray may touch the Earth's surface.

- NSatl, NSat2 - the number of satellites on the heights Hlow, Hjhigh. The signs

'+' or '-' are optional, but if they are set, must follow immediately after this

numbers and define the direction of the satellite moving (clockwise or opposite).

If no sign character set, '+' assumed.

- The arrays of Posl and Pos2 define the initial positions of satellites. Must be set

in degrees.

- PassTime - full time of real measurements.

- Step - the ray drawing step time.

- DrawTime - time that needs to draw picture on the screen.

The tree last parameters must be set in seconds.

1.2. The solution of the direct problem of TEC calculation for high-orbital

satellites Radiotomography.

The purpose of this section is to describe the technique and program for

solving the direct problem of ionosphere radio probing, i.e. the problem of

obtaining the TEC and the TEC difference from the data on the electron density

distribution. In view of calculation the direct problem solution amounts to

calculatiry the integral (10), i.e. the TEC or the TEC difference of such integrals for

a small variations of the satellite positions. For the computer modeling of RT
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problems it is necessary to calculate a series of such integrals for arbitrary

positions of the receivers and the transmitters on the satellites, therefore we

accomplished the program for calculating TEC and the TEC difference for arbitrary

positions of the receivers and the transmitters on the satellites.

Since the integrand has no peculiarities, the calculation can be performed

using the rectangle technique or the Simpson method. Let us evaluate the necessary

step of numerical integration and the accuracies obtainbd in this way. It is well

known that errors of numerical integration by the rectangle method 6 r and the

Simpson method e, are equal to:

S 3F( 2)  SVF(4)
1m= 2 2880m 4  (11)

where S is the integration interval length (the distance between satellites), m is the

number of the integral discretization elements. Integration errors made using the

rectangle and Simpson methods are proportional to the values of the second and

fourth derivatives, respectively, of the integrand at a certain point within the

integration interval. For an approximate estimation of errors it is sufficient to

evaluate the second and fourth derivatives as a result of dividing a characteristic

value of the function F by the square or the fourth power "a", respectively, of the

structural irregularities of F. Limitations associated with diffraction effects as well as

those of the linear tomography problem make it impossible to reconstruct details

smaller than 10-20 km using the method of linear ray RT [3,8], therefore

a _ 10 - 20km The value of m is equal to the result of dividing S by the

integration step As. Hense the estimations of absolute and relative errors are:

SF SF (Ah a)4.

6r 1 288(Ah/a)2 , 68 0

(12)

__ e < (Ah / a)2 / 12, -- • < (Ah a) 4 / 2880.
I SF - I SF--f -

When the integration step As = 0.5ikm and a=2Okm the relative error of the rectangle

method is 0.5*10-4 (for the Simpson method it is smaller than 10-11) which is
quite satisfactory for RT applications.
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Description of the program for calculation TEC and TEC-difference for the

high-orbit RT measurements

System Requirements

- Computer: IBM AT-486 or compatible (with coprocessor)

- Operating System: MS-DOS or PC-DOS version 3.0 and later

- Memory: at least Extended memory 8 Mbytes

(depends on geometry and type of

approximation reconstructed function)

- Hard Disk Space: 35 Mbytes

- Software: NDP-FORTRAN-486 Compiler Ver.3.1

NDPLink Ver.3.0 (C) MicroWay, Inc.

1. Program <dirjrthl.for>

This program solves direct problem for high-orbit RT measurements,

namely, determines the model structure and calculates the TEC or

TEC-difference integrals on the model structure.

Input parameters and files:

When starting program, you may choose the type of RT measurements

(TEC or TEC-difference). Then program asks about inegrals to calculate.

If you need only model structure you can answer 'No'.

Input file <task.dir> contains information about RT measurements

geometry and defines the names for output files. The example of this

file is enclosed. It contains the following lines:

'model.fun' - input file that describes model structure

"model.grd' - output file with model structure (GRD-format)

NF NR - number of discrets on the horizontal and vertical grid

0. HGPS - high orbit altitude (GPS satellites) over low orbit in km

TFIST TFIN - size of reconstructed area in km on the low orbit height

STEPS - number of the discrete steps along the ray

Nrec - number of receivers

LOs LOe HOs HOe Nrays - Nrec lines with initial and final positions of

satellites on the low and high orbits in km and number of
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rays for this couple of satellites
'lin int' - Nrec lines with the names of output files for integrals

for each receiver

The model structure is determined by function <FMODEL> which uses

functions <HOMCOS>. Function parameters are defined in file <model.fun>.
The example of this file is enclosed.

Output files:
MODEL.GRD - file with model structure (GRD-format)

Files <lin int> - arrays of either TEC or TEC-difference integrals

Compilation

mf77 dir_rthl .for -ol -486

RUN
ndprun dir rthl Itl

1.3. The construction of the projection operators for the high-orbital RT

measurements using various approximation methods.

In this section we consider the various methods to constuct the projection
operator L that translates the sought function of the electron concentration

distribution F into a set of integrals (TEC) I:

LF= I

First of all we shell perform the discretization procedure for equations (1) to
prepare the numerical calculations. We shall use the orthogonal coordinate system

(h, •r), where h - is the height above the low satellite orbit and T - is transverse

distance along this orbit. To digitize the sought function F(h,-r) in a fixed

rectangular (mo* no) grid we divide the rectangular reconstruction region into

m0 heights (m < m0 ) and no horizontal samples (1 < n < no ) and replace function by

a piecewise-constant approximation, or to represent F by a system of (m0 * n0) basis



functions equal to unity in certain rectangle and zero in all others. The value of the

function F(h, r) in a fixed (liP n) rectangle we define as Finn.

We perform digitization of the linear TEC integrals I(flr-) (10) according to

the initial direction to the satellite on the high orbit from receiver number i

placed on the low orbit satellite with current coordinate •-r. The set of elevation f8,

(6) of all moving receivers define a series of discrete values of the linear integrals

(10) Ij =_ I(/3O,-, ), where i - receiver number, j - ray number from set for receiver i.

The number of rays is determined by the parameters of the recording system. The

point in the rectangles at which the samples of F(h, T) are selected is not especially

important; this may be at the middle of the rectangles or nodes of the grid.

The simplest method of project operator discretization is piecewise-constant

approximation, when the coefficients of matrix A are proportional to the ray length in

elements of the discrete grid. Designating the length of ray (i,j) in cell (m,n) as g.

we obtain the system of linear equations

V, Fm,, = II,j

or after "renumbering" of the ray (i,j) - J and the cells of the ionosphere (m,n) - M

J4Fm = I•, (13)

System (13) may be either overdetermined or sub-definite. The problem of high-

orbit tomographic reconstruction according to TEC measurements is to determine the

set of discrete samples {F,•) in the known grid according to the set {14}.

This simple method of projection operator constructing, however, gives the

high error value of the direct problem solution (particulary for the small number of

discrete elements). Besides that the piecewise-constant approximation is invalid

for the problem of high-orbit RT according to TEC-difference measurements. The fact

is that the data here will be derivatives of linear integrals of type (10):

D = dI /dao, or finite-difference ratios of the increment AI of the linear integrals to

the increment Aa 0 of the satellite coordinate. The difference of TEC measured in

the experiment can be determined by the TEC (1) derivative. Because the satellites

move uniformly along a circular orbits it is possible to express the difference

of TEC by means of the derivative with respect to the angle of the satellite on the
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high orbit a0 and, hence, TEC-difference tomography data are proportional to

AI / Aa 0 . The derivatives of the linear integrals in a piecewise-constant

approximation of the sought function F will be discontinuous. This is because each
linear integral is the sum of integrals over the set of cells. As the elevation of the

high orbit satellite changes, the ray encounters a new cell; the integral with
respect to every of this cells is a continuous function of the angle of the satellite

a 0 , but the derivative of the linear integral with respect to a 0 will contain a

discontinuity when the ray contacts the corner of each cell. Therefore, the
piecewise-constant representation of the function to be reconstructed is not

appropriate to solve the TEC-difference problem correctly.

To ensure continuity of linear TEC integrals with respect to the coordinates of

the both satellites a 0 (or elevation ,8 ) the matrix L.M for transition from the function

to be reconstructed to linear integrals should be calculated differently. The main idea

of other methods of RT operators (matrices) design is the increase of the

approximation order for the reconstructed function and, hence, for the matrix L.
We used the piecewise-planar approximation based on the triangular elements,

product of linear approximations, product of local spline approximations and the

modification of the last method also including derivatives of the function on the

discrete grid. The accuracy of the direct problem solution is increased with the
higher approximations and the distinction between constructed and the real
"natural" operators is reduced. The matrix of the direct problem constructed by

these methods LJM: FM - I., is continuous with respect to the angle of the

satellite on the high orbit a0 , hence, in place system (13) it is possible to obtain a

system for TEC-difference data by differentiating (13) with respect to the angle a 0 :

AjMFM = Dj (14)

Here, D. - AIj / Aa0 are TEC-difference data and AjM =_ ALM / Aa 0 is finite -

difference ratio (or derivative) of the matrix L.M to the increment of the angle.

In, this section we consider examples of constructing smooth projection

operators of the direct problem wich are smooth by the satellite angle. The examples

of constructing the LJM matrices of the transition from the reconstructed function

to the linear integrals (matrices of projection operators) are useful for both TEC-

difference RT and for the TEC RT but the first is preferable. The advantages of the
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first method was repeatedly shown on the example of phase-difference RT

[6,8,25].

One must construct such a L.M matrix that would provide the smooth of

linear integral over the satellite angle using the piecewise-planar approximation of

the sought function on the basis of triangular elements. Such approximation ensures

the smoothness of the matrix LIm to be constructed. The smooth function F(h, ') is

replaced by a continuous polyhedral approximation surface, according to which

the derivative with respect to the satellite angle of the linear integrals is already a

continuous function. Triangular elements are obtained naturally from a grid of

rectangles: each cell (m,n)

(rM,, m+)*(hn,h,+i) = Az*Ah

is divided by a diagonal (r.,hk+,) -V(m+m,hn) running downward and left -to-right,

into two triangular elements: the "lower" and "upper" elements. The function

F(h, r-) within each triangular element is replaced by linear approximation

F(h,r) = a+ bc +ch (15)

The values of the coefficients (a, b, c) in each finite element are determined from

system of three equations for three boundary points. It is simple to immediately

write expressions for the function presentation in the lower (m,n) element

Fm+l• -F F -F

F(h, T) = Fon + AT_ (lTO+ Ah (h-h,) (16)

and in the upper (m,n) element

FFh, -)=F + Fm(,n+l Fn+1 - I-+) + F.+',n+l - FF+ ,n (h-hk+1 ) (17)F ~m, r)=Fn~l.+ A T Ah

As before, to simplify the notation we will renumber the values of the samples below:

Fm$4-+FM,

(m + 1,n) -+ (M + 1), (m,n + 1) -- (M + AM), (m + 1,n + 1) --> (M + AM + 1),

where AM is the number of cells horizontally in one row. Now we can define the

result of integration of such an approximation in lower element M



Jw(h)Fdh = JOFM + Jr(FM+1 - FM)+Jh(FM+AM - FM) (18)

and in upper triangular element M

.w(h)Fdh = J'oFM+AM+l + J' (FM+AM+1 - Fm+,M) + Jh'(FM+AM+A - FM+l) (19)

Here

1 w(h)[r(h)- r,.ldh, J' -1kr w(h)[r(h)- . ,J• -Ar h .hM+jh

(20)

1 Jw(h)[h-hIdh, Jh - ih h) ±1]dh-Ah A w h

where w(h) = (R + h)[R2 sin2 ,8 + 2Rh + h 21]-12, F(h, r) is represented in the form

of piecewise-planar approximations (16),(17) in each finite element, hk - lower

boundary of the cell in row n, h - height,where the ray leaves the lower element and

enters into upper. After integration (18) with respect to ray J in the lower element

M the value (Jo - J, - Jh) is entered into the coefficient LM , since it is a

coefficient for FM. Correspondingly, J, is entered into LJ,M+l and ]h into LJM+,.

The complete value of the coefficient LiM is the sum of integration result with respect

to the ray J in six around triangular elements. The integrals with respect to all rays

of type (20) can be calculated by various numerical methods, and, in each

integration step Ah it is necessary to verify that the ray does not exceed the limits of

the finite element. After complete numerical integration with respect to all rays,

we obtain the matrix LJM. The matrix Lim is related to the set {a0 } of positions of

the satellite on the high orbit and the corresponding series of rays. To determine the

matrix for TEC-difference tomography problem AJM one must calculate the matrix U

for another set of close positions of the satellites with a fixed increment

{a0 + Aa 0} for the first satellite and {(a + Aaj) for the second one and to find the

difference between them: AjM = (L'J.M-Ljm) / Aa 0 . Because all circular satellites

positions are proportional to time it is equivalent to time derivitivies or finite-

differences.
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To construct the projection operator using product of linear approximations one

can define two-dimensional function F(h, z) as the following sum [25]:

F(h, z-) = a00 + aolh + alor + an7h

This formula defines the function inside an arbitrary (m,n) rectangle through the

values of the function at the four angular points (x,y)= {(0,0); (0,1); (1,0); (1,1)1,

where x, y are normalized coordinates x = (I- - Im) / A',y = (h - h.) / Ah.

The next example of projection operator design is based on the product of local

cubic splines [25]. Then the function F(h, r) takes the form

3

F(h,r)= _ La,.rh (21)
mn=0

As it was described above the function represented through the normalized

coordinates x = (- - ) / Az-,y = (h- h) / Ah, inside an arbitrary (m,n)

rectangle, can be obtained through the values of the function at the four angular

points (x,y)= {(O,O); (0,1); (1,0); (1,1)):

F(x, y) = FooPo + F4oPoXo + FoYoP0 o + Fox P~o + Fo1Po+. ....

Here FX, F are the values of the function partial derivatives with respect to x,y,

F0f is the value of the function partial derivative of the second order with respect

to x and y. The total sum (21) will contain 16 summands, P., (x,y) are

corresponding polynomials of the power up to three. Two exaples of coefficient

calculation are

POO= 4x3 y3 - 6x 2y 3 - 6x 3 y 2 + 9x 2y 2 + 2Y3 - 3y 2 + 2x 3 - 3x 2 + 1

PoXo = 2x3y 3 - 4x 2y3 - 3x 3y 2 + 6x 2y 2 + 2xy' - 3xy 2 + X3 - 2x 2 + x

Then, integrating in each cell of the given polynomials we can produce the

corresponding elements of the matrix, as in the case (16-20). The cubic spline

approximation is differ from the described above. Such representation makes it

possible to find not only the function but also its first derivatives.
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Now we have describe four methods of the RT projection operators

constructing. As it was mentioned above, the projection operators with

approximations of higher orders allow a better approximation of the operator of

the direct problem, i.e. they enable us to come closer to the true operator of

the direct problem [25].

Description of the program for calculation of the different versions of the RT

matrices (operators) for the high-orbit RT measurements

2. Program <mat-rthl.for>

This program designs different versions of the operators (matrices) for the

TEC and TEC-difference high-orbit RT measurements.

Input parameters and files:
When starting program, you may choose the type of RT measurements

(TEC or TEC-difference) and the order of approximation (one of four mentioned above

approximation methods).

File <task.dir> contains the same parameters as the input file for the dir rthl .for

program. It was described in chapter 1.

File <nameF.mat> contains names of output files with parameters of

matrix, nonzero matrix items and they positions in matrix. All this files are need as

input files for program of the inverse problem solution. The example of

<nameF.mat> file for two-receiver configuration is enclosed.

Output files:

Files <Fmatr> - arrays of matric of corresponding approximation

for each receiver

File <Fparam> - parameters of matrices for each receiver

Files <Fjint> - results of multiplications of calculated matric

and model structure

File <Fst> - array (LST) of number of all rays which cross the

corresponding discret of model (SIRT algorithm)

Compilation

mf77 mat rthl .for -ol -486

RUN

ndprun mat..rthl .Itl

1.4. The solution of the inverse problem for satellite RT using middle and

high-orbital satellites of opportunity.



For futher computer modeling of the RT problems using middle and high-

orbital satellites of opportunity it is necessary to use a set of appropriate electron

density distributions models of the protonosphere. We have less information about

structure and dinamic of magnetosphere and protonosphere. Now there are no

detailed and precise models of magnetosphere and protonosphere, however as for

ionosphere , too. But there is no need in it for estimation of possibilities of

radiotomography of the magnetosphere and protonosphere. To solve this problem the

simple models of magnetosphere and protonosphere are required, which include the

main structural features ( plasmasphere and localized natural or man-made

irregularities and groups of irregularities ). However, the presented package of

programs makes it easy to design many other structural types and to extend this

"ZOO" as far as possible using the available "detailes". Here we will use the simple

protonospheric model , which is based on the idea, that electron density distribution is

determined mainly by geomagnetic L shells. Fig.14 illustrates a cutaway view of

geomagnetic L shells from the northen mid-latitude station [23]. The L shells greater

than 4 are considered to be open field lines, and consequently almost do not contents

the electrons. In addition supposed is the possibility of existance of localized natural

or man-made irregularities and groups of irregularities. In coordinate system T is

counted from horisontal axis - counterclockwise), such electron density distribution,

set by the state L=4 shells, may be assigned by the following model function:

2. (h2 (222

N=NO +N(1-h/h1 )+N 2 cos- (22)

First two items describe the background density (interplanet plasma, solar wind, etc.)

and the last item describes the plasmosphere. In computer modelling we will suppose

that ( if there are no another values)

No = 10cm3 ;N1 = 10 2 cm-3;N 2 = 5*10 3cm-3;h, = 20000km;
h2= 20000km; r2 = 5000km Let us underline one more time that precise functional

dependencies, describing the structure and location of L shells, are unimportant for
RT modelling. The qualitative congruence of reconstructed "pictures" is quite

sufficient. The electron density distribution, setting by model 22 is cited in fig. 15,

where h and T are measuring in km.

Let us turn to the description of computer modelling results. We wil consider

three main experimental geometries, which were chosen from data of the section 1.1:

I - three middle-orbital and one high-orbital satellites (fig.7), II - one middle-orbital
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and two high-orbital satellites (as first two satellites in fig.6), III - one high- orbital and

three middle-orbital satellites, rotating in opposite direction (fig.9). Other experimental

schemes are either unusefull for reconstruction of two-dimensional crosses (

contribution of high-orbital satellites and onearth receivers), or give the same results.

RT reconstruction of plasmaspheric structure or location of L shells boundaries

gives quite good results for all three schemes under the condition, that we have a

priori information about electron density magnitude, location and sizes of desired

structure. However, here the sufficient accuracy of this a priori information is required

to be 30-50%. According to the comparison of TEC, restored by reconstruction and

real TEC, it is possible to chose appropriate initial approximations and finite results,

varying different initial approximations. Fig. 16-17 show the results of RT reconstruction

model (22) according to scheme 1, where the initial approximation contain the

mistakes in determination of real distribution parameters: fig.16 (the mistake in

estimation of vertical size k is +10%), fig.17 (the mistake in estimation of the size 'r 2

is - 15%), fig.18 (the mistake in estimation of electron density maximum N 2 is

+15%). The experimental scheme was made in following way: the area of positive "

can be seen, that is why we can observe the only initial approximation from the left of

reconstruction.

The quality of RT reconstructions of smaller structures with localized

irregularities is notably worse according to scheme I. The results of RT reconstruction

model (22) with additional localized irregularities are cited in fig. 19-27. The localized

irregularity of the model from fig.19 under reconstruction (fig.20) is extracting and

distoring. The irregularities located on the border of L=4 shell, like model from fig.21,

are reconstructed badly. The results of RT plasmaspheric reconstruction with such a

irregularity with different magnitudes of local electron density maximum Nm of

irregularity are cited in fig.22 (Nm = 5*10 9m-3 ), fig.23 (Nm = 10*10 9 m-3), fig.24

(Nm = 25*10 9 m-3 ). It is seen that even the irregularities of quite high concentration

exceeding maximum inside L=4 shell in 2-5 times, practically can not be

reconstructed. Under the reconstruction , the local irregularity is only "spreading"

along the enclosing space. The same picture is observed under the reconstruction of

more complex model with three local irregularities (fig.25,26). Here also (fig.27) the

"internal" irregularities practically are not reconstructed, and the "external" are

distorting under the reconstruction. Such a lower quality of reconstructions is

connected with bad experimental geometry (fig.7), which is cited in coordinates (h, -)

in fig.28. The crossing angles of probing rays are small in this scheme, what leads to

strong expansion and deformation of localized objects under the reconsruction.



The scheme II also leads to the "spreading" of reconstructed objects. It can

be seen well, if we cite an example of restoration of model structure (22) with

localized irregularity in its center (fig.29), which practically is not selected being

reconstructed. The same pictire of "spreading" can be observed on fig.31-32 under

the reconstruction of a pair of localized irregularities. However there is another cause

of such "spreading" for experimental geometry II, than it was in I geometry. In fact it

can be seen from experimental scheme in coordinates (h, r), that the cross angles of

probing rays are varying in a wide range, but , unfortunately, there ( in this scheme)

exist no extensive areas of uncrossed rays, which contain the rays of the only one

satellite. The existance of such areas leads, while reconstruction, to the "spreading"

of restored object from the crossing ray area to the area of uncrossed rays. It is easy

to understand, that if there exist the localized irregularity (shaded in fig.33) in the

crossing ray area, than the algorithms will localize and select this irregularity correctly

in the crossing ray area under the reconstruction, but will leave its traces ( shaded

horisontally in fig.33) in the uncrossing ray area. To illustrate this thesis let us consider

the simple model of one localized irregularity (fig.34), the result of its reconstruction is
cited in fig.35, where extensive traces of such a "spreading" can be seen from the

crossing ray area to uncrossing ray area. However such a "spreading" can be avoided

if we have a priori information about negligibly small electron density in the uncrossing

ray area, that is the irregularities are located only in the crossing probing ray area.
The example of RT reconstruction of tha same model (fig.34) with the use of such a

priori information is cited in fig.36.

The results of RT reconstructions for scheme III with satellites, rotating in the

opposite directions, and with quasifan beams are little bit better. The odd figures

(fig.37-48) show the protonospheric models with various localized irregularities, even
figures show the results of RT reconstructions. Here, as usual, the localized

irregularities are selected under the reconstruction though the distortions and

attefacts are significant. The higher quality of RT reconstructions of scheme III is
explained by the better experimental geometry (fig.9, cited in fig.33, in coordinates

(h, r-), from which the large crossing angles of probing rays and small uncrossing ray

areas on the border of reconstruction area can be seen. Surely, large ray curvature

on borders of reconstruction area, the existance of upper and lower ray beams lead

to corresponded distortions and artefacts in RT reconstructions. However the

development of effective methods and algorithms of RT reconstructions in connection

with the similar certain schemes makes it possible to improve the results.
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Description of the program for solution inverse problem for TEC RT or

TEC-difference for high orbital RT

Program <slvjrthl .for>

Input parameters and files.
When starting program, you may choose the type of RT measurements.
Answer = 1 : TEC RT
Answer = 2: TEC-difference RT
NF, NR - number of discrets on the horizontal and vertical grid
NREC - number of receivers
'FMOD' - input file of model structure (program <dirjrthl .for>)
'FX0' - input file of initial guess

(program <dirjrthl .for> or function <guess>)
'Fparam' - input file with parameters of matrix
XIST - model structure from input file 'FMOD'
File 'nameF.slv' containes Nrec lines with names of input and output files.
The example of this file is enclosed.
line 1 - name of file with parameters of matrix (Fparam)
line 2: name1 - name of input file with matrix

name2 - name of input file with either TEC or TEC-difference
('Finput')

name3 - name of output file with results of multiplications
of input matric and reconstructed structure ('Fout')

line Nrec+2: name of file with number of all rays which cross
the corresponding discret of model

line Nrec+3: name file with model, name file with guess,
name file with reconstruction

line Nrec+4: name file with errors
Npi - array of contants (2pn) for each receiver
ern - level of noise in %
Npi, erjn are input from the screen
Nsolve - the method of solution, it is input from the screen
REL - array of relaxation parameter
LMAX - max number of nonzero matric elements for each receiver
AZ - array of nonzero matric elements for all receivers
NST - array of corresponding column nonzero matric elements for

all receivers
LST - array of number of all rays which cross the

corresponding discret of model (SIRT algorithm) from
input file <F..ST>, it is similar to LST in program <mat.rthl .for>

Niter - number of iterations, it is input from screen
Subroutine <DEFSYS> - solution of linear system equations for

one ray.
Subroutine <ercl2> calculates errors in metric C and L2
Subroutine <VMINM> calculates min and max of array
Function <RAN> calculates random values in [0,1]
Function <GUESS> - for initial guess
RMAX, RM, Zmax, ZSM, B1, B2 - parameters for function <GUESS>
Output files:
File <FREC> - file with the reconstruction
File <er-solv> - errors of right items and reconstruction in

metric C and L2
Files <Fout> - results of multiplications of the matric

and reconstructed structure



Execution
mf77 slv rthl .for -01 -486
RUN
ndprun slv-rthl .ltl



Part 2

Algorithms and Programs for Nonlinear Radiotomography.

2.1. The Solution of the Direct Problem of Radio Wave Propagation for
Nonlinear Radiotomography.

The presence of strong gradients of electron concentration leads to the necessity
of using the ray refraction in the problems of ray radiotomography. The ignoration of
refraction can give wrong results of RT reconstructions, and also limits the resolving
power of RT system. Taking the refraction into account it transforms to more complex
problems of RT. Supposed that the set of integrals over refractable rays, which
curvature is determined by propagating medium are known.

TEC= JNdcr = L[N] (1)
L[N]

Where, as it was mentioned earlier, J Ndo denotes the integration of the electron

density N along the signal path. However in general case the ray paths L[N] now
depend on the distribution of electron concentration and are determined by ray
equations. The theory and methods of linear RT reconstructions has been given in
our earlier papers [1-3,6,8]. Similar tomographic problems on linear integrals have
been solved in other fields of science and the methods of solving such problems are
well-known. In the case of ionospheric diagnostics, however, the major difficulty is
that the linear integral of the electron concentration is proportional to the
absolute phase 0, whose accurate determination is practically impossible,
therefore we have suggested [1-3,6,8,25] to apply the phase-difference (or
Doppler) RT approach, which has given quite satisfactory results. Note that to date
most works on the ray RT have been based on the phase approach, which can not
provide high-quality and reliable results. It was not until quite recently that an
acceptable alternative has been suggested, that of reconstruction by the relative
phase (relative TEC) data [26,27]. Such an approach is possible, but we belive,
however, that the sensitivity of this method would be lower than that of the
phase-difference (or Doppler) RT [25]. Such an approach also can be usefull in a
case of nonlinear RT. Than we will use similar system of equations where data will not

be TEC or absolute phases , but difference of phases or Doppler frequences D(a0 ),



which are proportional to derivative of TEC with the respect to the angle of satellite

a0 , that changes lineary for cyclic orbits with the respect to time.

In this article we will consider the direct problem of ray path calculation

according to electron concentration N. As it was mentioned earlier we will use the

coordinate system (h, r). To calculate ray paths, differential equation system should

be used [28-29]. Here it would be convenient for us to use the following equations for

calculations:

1. Equations that calculate the ray path directly with the respect to "angle of

refraction" 0.

d ~r =R ta
Adh (3)an

{dO I (R M h d(nh) dr__ (3)
dh- & -- R A - h-

2. "dinamic equations" , describing the ray path by the "time" parameter t, which
physical meaning is the optical lenght.

d dh _ (h +R)*T I1M'

dt - R2 • h dh - dr
d ((h + R)' 1 M3,2 (4)d

- 2R2

Here R - radius of the Earth, h - the height over the Earth's surface, n - coefficient of

refraction, n= 1--N; (if N is given in units 1012m- 3 , f - in MHz,

a ,;, 80.611), r - distance along the Earth's surface, (remember that h, r are
analog of polar coordinates, connected with the center of the Earth).

To estimate the area of using of this methods, which help to draw the ray path,

test and comparison of both methods were made. To model the ray path, the
quasireal models of ionosphere N (shown in fig.1) were used. In fig. 1 shown are the

through and local irregularities ,h e [0,1000],r e [-1000,2200] km. Here and later all

the pictures in shades of grey are illustrated in Cartesian coordinates, so that
coordinates (h, r) look as curvalinear coordinates, and unrefractable rays are linear.
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The notes of corresponded distances over h and r in the pictures, illustrating the

paths , are not shown, as the only essential things here are the distortion and

divergence of rays. Let us cite the results of investigations for three essentially

different cases of RT probing of ionosphere (concentration is cited in units 1012 m- 3,

frequency of probing f in MHz).

1. "Lower" electron concentration (with lower and average solar activity, max

N = 0.5*1012 M- 3, f = 150MHz).
2. "High" electron concentration (with high solar activity, max

N = 5*10 12 m- 3, f = 150MHz)

3. High electron density max N = 5*10"2m-3 and lower frequency of probing

f=-50 MHz.

Charts of Ah(-),Ar(h),ATEC(ro),AD(r7) dependences were dedused to

illustrate path calculations. Here, A - deflection of reflected ray from "direct" ray (

may be negative, because the magnitude for "direct" ray was subtracted from the

corresponded magnitude for real case), constructed with no respect to nonlinear

effects, D-Doppler data. There are pictures which have ray paths with the illustration

of ionosphere in grey shades, where the influence of inhomogeneities and parameters

of the problem (N, f) on the ray path is seen.

To test methods of ray calculations it is expedient to use so to say "quasiexact

solution" for layered ionosphere. Easy to see, that in a case of spherically layered

ionosphere, equations (4) can be integrated and it is possible to get expressions for

ray path -r(h) and integral I over h.

-r (h) = Jf+h R 2 cos/klr

r/r2 - R 2 cos2 f a - (N(r) - N(R))r 2

(5)

R+hr a [N(r) - N(R)]r 2

f= 2 N(r)dr
r 2_2 [N(r) - N(R)]r2 - R 2 cos 2p

The calculation of such "quasiexact solution" were carried out for quasireal layered

ionosphere ( the model of fig.1, without the through and irregularities). In table 1 the



values of maximum deflection of r-(h0) in km on the height of satellite are shown. It

was found by means of both methods from differential equation system with
"quasiexact solution" for one case of layered ionosphere and at various angles ý

from vertical line. Moreover the deflection over r has the multiplicity of 100 m at fall

angle ý = 800 , what is quite satisfactory because at such angles the ray passes the

distance multiplicity of 3000km in ionosphere. A step of solution of differential

equation system by method 1 or 2 here is equal to 100m along the ray lenght, so the

deflection has the multiplicity of 1 step. It is seen that the second method gives better

results.

To compare the deflections of z" of solutions r(h), which were received by two

methods "in emptiness" (n=l), from exact solution "in emptiness" (fig.2), the first

method, illustrated by dotted line in picture, led to maximum deflection, especially at

large fall angles of ray. It is connected with the fact, that the step by step solution of

differential equation system was accompanied many times by operation tan. This

leads to essential supply of mistakes because of the finite bit-word lenght of computer

machine. And though the second method doesn't allow to chose fixed step over h and

, with the solution of differential equation system, it doesn't lead to multiple

calculations of trigonometrical functions, and that is why it is more suitable for the

solution of RT nonlinear problems from the point of view of accuracy and speed.

As it was expected in the case of lower electron concentration at maximum

0.5*1012m-3 and f=-150 MHz (case 1) the influence of ionosphere on ray path is

insignificant (fig. 1 ). Fig.3-6 show the charts of the dependences Ah(r), Ar(h) for fall

angles • = 40,800 from vertical line (pic.3,5 Ah(r) for ý = 40,800 correspondly,

pic.4,6 Ar(h) for ý = 40,800 correspondly). Pic.7 shows the values of

TEC(r0 ),TECo(r 0 ), and fig.8 shows D(ro),Do(ro), where TECo(r 0),Do(ro) -

magnitudes of TEC and Doppler for "direct" ray (illustrated by dotted line). It is seen

that with the increasing of the fall angle ( what is corresponded to greater distance of

ray in ionosphere), deflection of ray from the "direct" one over r increases (compare

fig.4 and 6), and, correspondly, the difference between magnitudes of TEC increases.

But even for ý = 800 the difference between TEC('ro) and TECo(ro) doesn't

exceed 0,1% for this case, and Ar doesn't achieve 2km (fig.6).

In the case of high electron concentration (N = 5*0 12m- 3,f = 150MHz - the

second case) the influence of nonlinear effects on ray path is essentially stronger. Fig.

9-12 show the charts of dependences Ah(r), Ar(h) for fall angles ý = 40,800 from

vertical line (fig.9,11- for Ah(r) for 4 = 40,800 correspondly, fig.10,12 Ar(h) for



56

0.0

-0.0

-0.1

E -0.1
c-

40-0.2 3

"0.3

-0.4
-- 0 . Illllllll ll 1 1 II l l l l l l ll llll 1 1 I llllllllll

-1000 -800 -600 -400. -200 0

T, km

0.2

0.1

0.1

E F;•. 4.

v 0.0

0.0

-0.0

-0.1
0 200 "400 600 800 1000

l h l



A-;7

. • 0.0

-0.2

-0.4

•-0.6-

-0.8

-1.0

- 1 2 I I II I I I II I I II I I III I I I I I I I I I I I I I i-rTT -r-rT-r-rTT I -n

-1500 -1000 -500 0 500 1000 1500 2000

Z, km

2.0

1.5

1.0

E
- 0.5

10.0

-0.5

1.0

0 , 200 400 600 80.0 1000

h Jm



... 58

2.40

2.00

E 1.60

0

* 1.20

- 0.80

0.40 R

0.00
-1500-1000-500 0 500 1000 1500 2000 2500

T, km

8.0

6.0

o4.0

C.)

-o 2.0
0

C( _1- 00-1000-500 0 500 000 500 2000 2500
0._

o 2 km
0-2.0 8

- 6 .0 1•, ,



"" -0.0

-0.5

-1.0

E -1.5

-2.5

-3.5
-1000 -800 -600. -400 -200 0

Z",km

1.6

1.2

0.8
E

0.4

0.0

-0.4 •-,!
F;a. io

0 " 200 400 600 800 1000

h, km



60'

S0-o

-2-

-4-
.E

-6

-10,

-1500 -1000 -500 0 5600' 1000. 1500 2000

"",km

20.0

15.0

10.0

E

5.0

.4

0.0

-5.0 .

- 1 0 .0 1 . . . . . l o l l ! , I I . . I I . . . , I I I I I I I I I 1 I I I I ..

0 "'200 400 600 800 1000

h , km



24.00

20.00

CV

E 16.00

0

- 12.00

LU
.- 8.00

4.00 Ra. G

0 .0 0 .. , .... , .... .'"1 11"'"11..... .. ' "I ' 1 '"1 1 ...'.1'"1'1 1 51 ........... .
- 1500-1000-500 0 500 1000 1500 2000 2500

Z ,km

80.0

60.0

(D 40.0
co
-()

[0

L 20.0

U1)

0 0.0

-1 00-1000-500 0 500 500 2000 2500

"It, km
-20.0,

-40.0,
.,p . .'.



62

= 40,800 correspondly). Fig.14 shows the values of TEC(ro) and TECo(ro), and

pic.15 - the same for D(r0 ),D 0 (ro0 ). In addition the mistake in data (TEC) at a fall

angle equal to 80 degrees is now essential and it reaches 3% (fig.13) and A'r(h) is

attaining to 18 km (fig. 14).

The estimations of small deflections from ray path in emptiness can be

received without any difficulties from equations (4). Let us consider the vertical ray fall.

It can be shown that the estimations of angles of vertical deflections and deflections

themselves would be the same for another direction of ray fall. The angle X of

vertical deflection for normal ray fall X = Apr /P is expressed by the analog of

impulse for "dinamic" equations (4).

Let us remember that Ph = h, Pr = (r / R)ý, p 2 = p 2 + p2 n 2 ;z ],

and for quasivertical ray Ph - Ph (t = 0) = 1. The increase of impulse according to

T" is determined by second equation (with the respect to ignoration of difference

between (R+h)/R and 1).

1 A2 I 6h2 ad\T a AN aANJAX & APr ýý -2-- At 9 -fr- a4 ' 2 f 2 drca• a / 2a f2 (6
2 dr 2 6 2fJ 2f~/

Supposed that At & a (because dt= dl / n • Al), the size of

inhomogeneity, and concentration gradient is equal to ratio of its overfall AN and the

half of total size of inhomogemeity. Then the transverse ray deflection (distance

between rays) would be propotional to the passed distance L.
a

AX zL - ANL (7)
f 2

What is (for probing frequency 150 MHz) equal to:

Ax r 3,6*10-3 ANL (8)

Here AN is measuring in units of 10 1 2 m-3 . It is notable that the relations

(6,7) do not involve the sizes of irregularity, everything is determined by overfall of

electron concentation. For typical overfalls AN •- (1 - 3)]012 and ray lenght
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L ;- (1 - 3)103 km the deflection (8) would be varyed in the range between one

and tens of kilometers.

Fig. 15 shows the deflection Ar (h) (when • = 800), calculated for the same

layer (fig.1) in the third case of high concentration and lower frequency probing. For

the second and the third cases the parameter ciAAT / f 2 differs in 9 times, that is

why the deflection A r(h) behaves like the deflection from fig.6, but nearly ten

times more. In the scale fig. 1 the deflections equal to 10 km , which are typical for the
second case, are unnoticable, that is why to illustrate path calculations the figures for

the third case are cited. Fig.16 shows well the "focusing" of ray by the electron
concentration trough . Fig.17-18 show, that the local irregularities' can deflect the ray
in various directions from the straight ray, and it depends on from what side relatively

to irregularity maximum the ray passes.

As it follows from the results of this section, the small angular and linear

deflections of real rays from linear approximation are propotional to variations 4//of
electron concentration and do not depend on the size of irregularities. For probing

frequancy 150 MHz, these deflections are estimated less than a kilometer for

variations AN < 10120m- 3 , that is when the solar activity is not high. For example,

these deflections can reach tens of km for AN >_ (2 - 3)]012 m- 3 , when the solar

activity is high. Hence, it follows that for RT investigations on 150 MHz the respect of
refractable corrections is necessary only for high solar activity and for the sizes of

digitization elements less than 20-30 km. The use of lower frequency radiowaves

f <_ (50 - 100)MiHz for RT investigations requires the respect of refraction.

Table 1.
A, r..(h), KM. AT.,(h), Km.

METHOD 1 METHOD 2
0 3.78E-5 3.78E-5
20 3.08E-2 4.47E-3
40 -7.14E-2 1.17E-2
60 -0.12 3.03E-2
80 -0.27 0.11

Description of the programs for calculation TEC, Phase and Phase-difference

measurements for Nonlinear RT.
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System Requirements

- Computer: IBM AT-486 or compatible (with coprocessor)

- Operating System: MS-DOS or PC-DOS version 3.0 and later

- Memory: at least Extended memory 8 Mbytes

(depends on geometry and type of

approximation reconstructed function)

- Hard Disk Space: 35 Mbytes

- Software: NDP-FORTRAN-486 Compiler Ver.3.1

NDPLink Ver.3.0 (C) MicroWay, Inc.

Program <dir.nl.for>

This program solves direct problem for Nonlinear and Linear RT measurements,

namely, determines the model structure and calculates the TEC, Phase and

Phase-difference integrals on the model structure.

Input parameters and files:

When starting program, you may choose the type of RT (Nonlinear or

Linear) and RT measurements (TEC, Phase or Phase-difference). This

program calculates Phase-difference measurements only for linear RT. Then

program asks about integrals to calculate. If you need only model structure you can

answer 'No'.
Input file <task.dir> contains information about RT measurements geometry

and defines the names for output files. The example of this file is enclosed. It

contains the following lines:

'FNmod' - input file that describes parameters of model structure.

The example of this file is enclosed.

'F.model' - output file with model structure (GRD-format)

NF, NR - number of discrets on the horizontal and vertical grid

Nrec - number of receivers

FP, TSATO, TSAT1, RAY - Nrec lines with coordinates of receivers,

initial and final positions of satellite

in km and number of rays for each receiver

HFIST, HFIN - vertical size of reconstructed area in km

TFIST, TFIN - horizontal size of reconstructed area in km

NJ - number of the discrete steps along the ray



'FINT' - Nrec lines with the names of output files for integrals

for each receiver

Freq - the probing frequency (MHz)

ts, ddt, ddh - parameters for subroutine <INTERG>
The model structure is determined by function <FMODEL> which uses

functions <FUNCl>, <FUNC2>, <HOMPAR>, <HOMCOS>. The combinations

of these functions make it possible to obtain different model

structures.
Subroutine <DEFPSI> determinates the angles of rays on the

satellite's cooordinates.

Subroutine <DEFINT> calculates the integrals for all rays for each

receiver and uses subroutine <INTERG> which calculates the

integral for one ray.

Output files:
MODEL.GRD - file with model structure (GRD-format)

Files <linjint> - arrays of either TEC, Phase or Phase-difference

integrals

Compilation

mf77 dirnl.for -ol -486

RUN

ndprun dir nl.ltl

Program <dpl_nl.for>

This program calculates Phase-difference measurements for
nonlinear RT for one receiver.

Input parameters and files.

'SFILE' - input file with phase array

NZ - dimension of phase array

Subroutine <rd> reads of input file

Subroutine <dpl> calculates doppler by means of approximation of

phase of polynomial of the power 3 and uses subroutines <regres>

and <gauss>.

Subroutine <wr> writes in output file.

Output file.



'NFILE' - output file with doppler

Compilation

mf77 dpl-nl.for -ol -486

RUN

ndprun dpl nl.ltl

Program <tblint.for>

This program calculates linear interpolation of input array.

Input file.

'interp.ts' - input file contains number of receivers and

Nrec lines with names of input and output files,

with dimensions of input and output arrays.

The example of this file is enclosed.

Output file.

'F..appr' - output files with interpolated arrays.

Compilation

mf77 tblint.for -ol -486

RUN

ndprun tblint.ltl

2.2. Design of the different versions of the RT operators for nonlinear

Radiotomography.

The problems of the design of the different versions of the RT operators

(matrices) are considered in this section. At first it is necessary to perform

digitization of the linear integrals (1.1) according to the position of the satellite,

which is dependent on the coordinates r 0j or the angle a 0j = j / R. The

dependences r-(h) or h(r) are determined from ray equations (4). A series of

elevation fl, of the satellite for i-receiver are determined from relation (1.6) which

define a series of discrete values of the linear integrals I[ .(flul'f). The
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discretization procedure is fully described in [3, 25]. As it was shown earlier in

[3,.8,.25], analogously we obtain the system of linear equations, which may be either

overdetermined or sub-definite.

LJ'F., = IIj , or LMJFM = 1,. (9)

Here, "renumbering" of the ray (i,j)--J and the sells of the ionosphere (m,n)-+M

is performed in the second equation. The problem of ionospheric RT according to

phase-difference or Doppler measurements require higher-order interpolation than

the piecewise-constant representation of the function. The Doppler frequency

S= do / dt m easured in the experim ent is determ ined by the phase derivative (2),

namely:

Vo d6

R + ho dt

where V. -velocity of a satellite moving uniformly along a circular orbit. As it was shown

in [3,.10], if the matrix of the direct problem LM:FM -- I, is continuous with

respect to the angle of the satellite a 0 , it is possible to obtain a system for

phase-difference or Doppler data by differentiating (9) with respect to the angle

a 0 :

AjMFM = Dj. (10)

Here, Dj - AI / Aao are Doppler data and A.,M - ALIM / Aao is finite -difference

ratio (or derivative) of the matrix L.M to the increment of the angle.

The methods of constructing the projection operators or L4M matrices for the

phase RT and also for the phase-difference RT are similar to the methods presented

in details earlier in [3, 25], but it is necessary to take into account the

dependence r(h) or h(r). The following operators (matrices) for solving the RT

problems are described:

A - is built with the piece-constant approximation,
B - is built with the piece-planar approximation,

C - is built with the linear product approximation,



D - is built with the cubic spline product approximation.

Projection operators with approximations of higher orders allow a better

approximation of the operator of the direct problem, i.e. they enable us to come

closer to the true operator of the direct problem. It is necessary to note that

formally in the shape of equations (9-10), the problems of linear and nonlinear

RT are identically. But it is not so, when designing of operators in the problems (9-

10) we use direct rays in the linear RT, on the other hand in the nonlinear RT we use

the rays are determined by system (4). Therefore the equations (9-10) relatively
sought function F (the distribution of the electron density) are nonlinear, because

the distribution of the electron density defines the structure of operators A and L in

(9-10). Of course, if the curvature of the rays is not great, than the operators of

linear and nonlinear RT will be practicallly coincided.

Table 1,2 show examples of errors of calculations of the phase (integrals-

I] ) for each of receiving site (in this case a chain of four receiving sites with

cooordinates r: 0, 300, 800 and 1200 km are used) with refraction and without

refraction for model 1: two irregularities are on the edge of the trough (this model

will be discribed in the next section) with the help of different operators: B, C. For

model 1 the electron density AN changes from 1*10 2m-3 (tabl.1) to 5*10 2m-3

(tabl.2) at probing frequency 150 MHz. Errors of the numerical simulation can

appropriately be characterized by number 6, which shows the deviation of the

calculated function (being reconstructed) F from the true function F:

8 = F- F--/ -IFII. The norms of the spaces 12 and l0 can be helpfully used

(62 =- (12) and 8. =- t(!o)).

As it is seen from tabl.1 if AN is about 1012m-3 the errors of calculation of the

direct problem operator with and without refraction are commensurately and consist
of part of percent. In other words true phase little differs from the phase calculated

without refraction, that is illustrated in Fig.19 (first receiver) and Fig.20 (third

receiver). The true phase is shown by solid line, and dashed line is the phase

calculated without refraction in these figures. The curves are practically coincided.

The phase calculated with refraction is not presented, because it is

indistinguishably from true phase.

We have another situation if AN is about 5*10 12m-3. As it is shown in tabl.2, the

errors of calculation of the direct problem operator without refraction 5,0 are 25% in

space lI at the same time the refraction corrections allow to decrease these errors

up to units of percent. The curves of true phase (solid line), phase calculated with
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refraction (dotted line) and phase calculated without refraction (dashed line) are

presented in Fig.21-24 for all four receiving sites. One can see essential difference

between true phase and phase calculated without refraction. In particular, the phase

calculated without refraction has different behaviour than true phase in Fig.21

(receiver 1) and in Fig.24 (receiver 4), and the difference of values is about 700-800

radian (Fig. 24). In other hand, the phase calculated with refraction has not essential

differences from true phase. Hence, as it was mentioned in section 2.1, it is

necessary to take into account the refraction corrections for RT at probing

frequency 150 MHz when AN _ 2 - 3*1012 m-3 , i.e. in years of high solar activity.

Table 1

Accuracy of construction of the direct problem operator

Model 1, AN , 1012 m-3

Nonlinear RT Linear RT

Operator Receiver 8' 82 8. 82

type

B 1 0.0084 0.0061 0.0131 0.0096

2 0.0079 0.0057 0.0111 0.0081

3 0.0068 0.0051 0.0123 0.0073

4 0.0070 0.0052 0.0134 0.0087

C 1 0.0071 0.0057 0.0130 0.0093

2 0.0081 0.0059 0.0110 0.0082

3 0.0067 0.0051 0.0121 0.0071

4 0.0069 0.0051 0.0115 0.0086

Table 2

Accuracy of construction of the direct problem operator



Model 1, AN = 10 12 m3

Nonlinear RT Linear RT

Operator Receiver J6 52 (5 82

type

B 1 0.0115 0.0081 0.2056 0.1192

2 0.0098 0.0070 0.1486 0.0769

3 0.0106 0.0061 0.1241 0.0683

4 0.0135 0.0065 0.2591 0.1242

C 1 0.0092 0.0073 0.2041 0.1191

2 0.0101 0.0072 0.1471 0.0767

3 0.0099 0.0060 0.1219 0.0679

4 0.0109 0.0064 0.2558 0.1238

Description of the program for calculation of the different versions of

the matrix (operators) for Nonlinear RT

System Requirements

- Computer: IBM AT-486 or compatible (with coprocessor)

- Operating System: MS-DOS or PC-DOS version 3.0 and later

- Memory: at least Extended memory 8 Mbytes

(depends on geometry and type of
approximation reconstructed function)

- Hard Disk Space: 35 Mbytes

- Software: NDP-FORTRAN-486 Compiler Ver.3.1

NDPLink Ver.3.0 (C) MicroWay, Inc.

Program <mat-nl.for>

This program designs different versions of the operators (matrics) for phase

RT or phase-difference RT.
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Input parameters and files:

When starting program, you may choose the type of RT (Nonlinear or

Linear) and RT measurements (TEC, Phase and Phase-difference).

Input file <task.dir> is same as in program <DIRNL.FOR>

Parameters <NF, NR, NREC, NJ, FP, TSATO, TSAT1, RAY, HFIST, HFIN,

TFIST, TFIN, Freq, ts, ddt, ddh> are similar to same parameters of

program <DIRNL.FOR>.

File <nameF.mat> contains NREC lines with names of output files.

'F.model' - input file of model structure (program <DIRNL.FOR>)

APTYPE - type of approximation of reconstructed structure, it is

introduced from the screen

Subroutine <DEFPSI> determinates the angles of rays on the

satellite's coordinates.

Subroutine <DEFMAT> determinates the matrix elements with

corresponding approximation for one receiver and uses subroutine

<RAYINT> and subroutine <APPROX>.

Output files:
Files <F.matr> - arrays of matric of corresponding approximation

for each receiver

File <Fparam> - parameters of matrices for each receiver

Files <F-int> - results of multiplications of calculated matrix

and model structure
File <F-st> - array (LST) of number of all rays which cross the

corresponding discret of model

Compilation

mf77 mat.nl.for -ol -486

RUN

ndprun mat.nl.ltl

2.3 The solution of the inverse problem for satellite nonlinear

Radiotomography.
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In this section we will cite the results of solution of inverse nonlinear RT

problem. As we noted earlier, equation systems (9-10) are nonlinear equatons

relatively to electron density distribution, because electron density distribution

determines also the structure of operators A and L themselves in (9-10). The

successive approximation method is the most suitable method to solve such linear

equation systems. This approach is correct because the ray distortion is not strong in

the majority of practically interesting cases and operators of linear and nonlinear RT

are close. On the first stage of successive approximation method matrixes L and A

are calculated using the initial approximation N. Then one of the linear equation

systems is solving (9 or 10 correspondly) and the first approximation of electron

density distribution N is finding. On the second stage the following approximations for

matrixes A or L are calculating using the first approximation N. Then again the

corresponding linear equation system is solving and the second approximation of

electron density distribution N is finding. Further this process can be repeated. Thus,

here, on every stage, the linear equation system is solving, using the operator matrix,

which was constructed according to previous approximation N.

There ixist a lot of variants of solution of linear RT problem, which give different

results. To illustrate the solution of nonlinear RT problem it is correct to use the same

method in a case of linear RT, to make it possible to distinguish the difference

between linear and nonlinear RT for our analysis. In the following examples, the

method C of building the operators of direct problem was used. (C is built with the

linear product approximation). The use of other methods of building the operators of

direct problem, the same for linear and nonlinear case, gives the same results. Here,

to solve the RT problems, the phase 9 and phase-difference or Doppler (10)

approach will be used. Though the use of phase approach over TEC is appeared to

be unperspective ( we repeatedly criticized this method), however, here, it is usefull to

cite the results of the influence of refractable corrections on both approaches.

To estimate the power of the influence of refractable corrections on the

solution of RT problems we will use several simple ionospheric models. It is obvious,

that the qualitative sight of the influence of refractable corrections on the solution of

RT problems slightly depends on the model, and it (sight) is determined mainly by

the parameter aAN / f 2 (9,10) which characterizes the variations of electron density.

As a first model, the model of quasilayered ionosphere with a trough and two

irregularities on the border of the trough (fig.25), with maximum of electron density

equal to 5*1012 m-3 (f=-150 Mhz) was used. Phase curvatures of this model were

already cited in the previous section (fig. 19-34). Fig.26-28 show the radiotomographic

reconstruction results of given model: fig.26 - reconstruction by linear RT method,



fig.27 - reconstruction by nonlinear RT method after the first stage, fig.28 -

reconstruction by nonlinear RT method after the second stage. It is notable that the

reconstruction quality became better. This is also demonstrated by reconstruction

mistakes, for example, for linear RT the mistakes (82 = 12.4% and

8 = 3 7 . 9 % ), and for nonlinear RT after the first stage (82 = 8.4% and

(5, = 20.8%). Also the congruence of the magnitude of electron density maximum for

nonlinear case 5.08 (in units 1012 m-3 ) against 5.59 in linear case is essentially better.

This essential improvement of reconstructions is not amasing, because the operator

approximation of direct problem essentially improves at high electron density

AN ; 5*1012 m-3 with the use of nonlinear RT approach (fig.21-24). In a case of lower

electron density AN -- 0.5*10 2m-3 the operators approximation of direct problem are

closed for linear and nonlinear RT (fig.19-20) and the solution results of inverse

problem practically coincide.

As a second ionospheric model the model of quasiwave structure on the

background of the layered ionosphere (fig.29) with electron density maximum

3*10 12 m-3 was used. On such maximum level the results of RT reconstructions by

linear and nonlinear RT methods are closed, however the mistakes in nonlinear case

(82 = 9.5% and 80 =24.4%) are slightly less that the linear case mistakes

(82 = 10% and 8, = 27.2%). The closeness of RT reconstruction results is explained

by quite good linear operator approximation, what is illustrated in fig.32, where the

real phase is illustrated by intire line, calculated with the respect to refractable

corrections and the result of product of operator (9) linear approximation and the

model is illustrated by dashed line. The situations in reconstructions notably changes

with the increasing of electron density maximum of quasiwave structure to 5*1012 m-3

(fig.33). The difference between linear and nonlinear RT now is becoming more

essential. The reconstruction quality received by means of linear RT method is not

satisfying: in fig.34 it is difficult to guess where the quasiwave structures are

(82 = 13.4% and 85, = 32.5%). The result of the first stage of nonlinear RT

reconstruction is cited in fig.35, the second stage in fig.36. Seen is, with the use of

nonlinear RT approach the situation became notably better, what is demonstrated by

the reconstruction mistakes (82 = 8.19% and 8J = 24.4%) after the first stage,

(82 = 8% and 8,, = 24%) after the second stage. In the last case the difference

between linear ( dashed line in fig.37-38) and nonlinear (entire line, which practically

coincides with real phase) approximation is more essential compared with the less
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maximum, what is seen well in fig.37-38, where this difference is cited for first two

receivers.

The results, cited earlier, are related to reconstructions over phase and TEC.

As it would be seen lower, the same results in a meaning of influence of refractable

corrections, are obtaining also under the reconstruction over phase difference (TEC

or Doppler difference). In fig.39 shown is the following ionospheric model with a

trough, possitive irregularity from the left border of trough and negative irregularity

from the right. The lower reconstruction quality in linear approach according to phase

measurings (82 = 12.7% and 8. = 38.4%) is illustrated by fig.40, where strong

artefacts and distortions do not allow to select initial irregularities. The use of

sequential stages of nonlinear RT method over phase differences gives better results:

I stage (fig.41, 82 = 9.3% and 8c = 46.5%), II stage (fig.42,

82 = 9.18% and 8. = 48.8%), III stage (fig.43, 82 = 9.1% and 8. = 46.7%), IV stage

(fig.44, 82 = 9.12% and 85 = 46.8%),. The use of three stages is enough here

as the quality improvement doesn't take place with the following stages. The use of

Doppler method essentially improves the reconstruction results both in linear and

nonlinear cases, what is explained by higher sensitivity [25] of difference Doppler

method. The Doppler reconstruction results are given in fig.45 (linear case,

82 = 7% and 8J, = 20%) and fig.46 (nonlinear case, 82 = 5.6% and 8,", = 19%)

where high reconstruction quality is seen well.

The last fourth model which illustrates the nonlinear RT methods is shown in

fig.47. It is a quite complete structure with a trough and four irregularities ( two

"positive" z - Okm, z- • 1300km and two "negative" z- -50km, r • 1000km). Such

combinations of "positive" and "negative" irregularities, overlaping each other for

different receivers, usually are the most difficult for RT reconstructions. The electron

density level is supposed to be high enough AN - 5*.] 1 2 m- , to make

refractable effects exhibit notably. The result of RT reconstruction by the linear

Doppler RT method is shown in fig.48. (82 = 7.8% and (5. = 18.7%). Here, the

possitive irregularities are seen well, but the negative practically are not exhibited. The

results of RT reconstruction made by nonlinear Doppler RT method are much better,

the are shown in fig.40 ( after the first stage 82 = 6.5% and i%, = 16.5%) and in

fig.41 ( after the second stage 62 = 5.5% and (%, = 13.8%). The attention should

be payed to quite high reconstruction quality in fig.41, where the main qualitative

pecularities of reconstructed structure are exhibited well. Let us note that here and

earlier during the step by step RT reconstruction only small quantity of iterations 2-4
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by ART and MART methods were used. The mistake , compared with the mistake of

operator approximation sould be left in the first part of equations (9-10). Than, if we

increase the iteration quantity and dicrease the mistake in the right part ( the mistake

according to data I or D ) the solution will go away from the real and they (solutions)

will diverge. Than the matrix operator calculation for the next stage will have the large

mistakes and the sequential stage will not lead to the improvement of results.

However such a small iteration quantity gives usually good coincidence of the right

part of equations (9-10). As an example, let us cite the result of comparison of

Doppler frequencies for the second and the third receivers after only the two iterations

of the second stage ( relative mistakes of Doppler frequencies

(2 = 11% and 5,, = 2491o). Fig.51 and fig.52 show the real Doppler frequencies

for by entire line, and Doppler frequencies after RT reconstructions from fig.50 - by

dashed line.

Generally it should be stated that the refractable effects becomes essential

when the deflection of refractable rays from direct becomes comparable with the size

of element digitization in RT problem. The deflections of refractable rays are

determined mainly by electron density difference AN. On the probing frequencies

equal to hundreds of MHz, usually, the refraction is ignored for AN<• 1*10 12m-3 and

for size of element digitization more than 20 km. The refraction should be respected

for large AN > (2- 4)*1012m- 3 , for example, in the years of solar activity, and also for

probing on frequencies equal to 50-100 MHz. More precise estimations , for

intermediate cases, can be obtained from 6-8, and also by computer modelling with

the help of programs presented here.

Description of the program for solution of inverse problem Nonlinear RT

Program <slv-nl.for>

This program solves inverse problem for TEC, Phase or Phase-difference RT

by means of different algorithms: ART, MART, SIRT. It calculates errors of

reconstruction in metric C and L2 in dependence upon data errors and noises.

Input parameters and files.

When staring program, you may choose the type of RT measurements

Answer = 1 - Phase RT: Tec..ph = 1 --- > TEC measurements

Tecph = 2 --- > Phase measurements

Answer = 2: Phase-difference RT

Answer, Tec.ph are input from the screen
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NF, NR - number of discrets on the horizontal and vertical grid

NREC - number of receivers

'F.MOD' - input file of model structure (program <dirrthl .for>)

'FX0' - input file of initial guess

(program <dirjrthl .for> or function <guess>)

'Fparam' - input file with parameters of matrix

XIST - model structure from input file 'FMOD'

File 'nameF.slv' containes Nrec lines with names of input and output files.

The example of this file is enclosed.

line 1 - name of file with parameters of matrix (Fparam)

line 2: name1 - name of input file with matrix

name2 - name of input file with either TEC or TEC-difference

('Finput')

name3 - name of output file with results of multiplications

of input matric and reconstructed structure ('Fout')

line Nrec+2: name of file with number of all rays which cross

the corresponding discret of model

line Nrec+3: name file with model, name file with guess,

name file with reconstruction

line Nrec+4: name file with errors

Npi - array of contants (2pn) for each receiver

ermn - level of noise in %

Npi, er-n are input from the screen

Nsolve - the method of solution, it is input from the screen

REL - array of relaxation parameter

LMAX - max number of nonzero matric elements for each receiver

AZ - array of nonzero matric elements for all receivers

NST - array of corresponding column nonzero matric elements for

all receivers

LST - array of number of all rays which cross the

corresponding discret of model (SIRT algorithm) from

input file <FST>, it is similar to LST in program <mat_nl.for>

Niter - number of iterations, it is input from screen

Subroutine <DEFSYS> - solution of linear system equations for

one ray.

Subroutine <ercl2> calculates errors in metric C and L2

Subroutine <VMINM> calculates min and max of array
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Function <RAN> calculates random values in [0,11

Function <GUESS> - for initial guess

RMAX, RM, Zmax, ZSM, B1, B2 - parameters for function <GUESS>

Output files:

File <F.REC> - file with the reconstruction

File <er-solv> - errors of right items and reconstruction in

metric C and L2

Files <Fout> - results of multiplications of the matric

and reconstructed structure

Execution

mf77 slv-nl.for -ol -486

RUN

ndprun slv-nl.ltl
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